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Abstract. The numerical-stability consequences of the remaining ellipticity in the Parabolic Stability Equations
(PSE) are studied. The analysis of Li and Malik of the constant-coefficient Navier-Stokes equations is extended by
a detailed analysis of the parabolizing steps. Dropping of the highest streamwise derivative removes the slowest
decaying upstream propagating mode, whereas the fastest remains. This mode can be numerically damped, by use
of an implicit discretization of the streamwise derivative and a large enough streamwise step size. Suggestions of
how to make the equations well-posed by the addition of a term proportional to the truncation error of the implicit
scheme are given. This term is easy to implement, does not change the order of approximation and removes the
step-size restriction. An explicit formula for the critical step size is also derived, in the modified equations, which
shows that the equations are completely stabilized for a properly chosen stabilization parameter.

Keywords: parabolic stability equations, hydrodynamic stability, ill-posed equations, boundary-layer flow.

1. Introduction

In a variety of flow situations in fluid mechanics, the region where transition from laminar
to turbulent flow takes place has to be determined. The most common transition-prediction
methods are based on linear stability theory which describes the evolution of small distur-
bances. The classical stability theory is based on the assumption of parallel flow and does not
account for either growth of the boundary layer or the upstream history of disturbances. In
the framework of this theory, the equations of disturbance evolution are formulated in terms
of an eigenvalue problem. The effects of growing boundary layers have been introduced into
the stability theory by several authors,e.g.Gaster [1], Saric and Nayfeh [2], Gaponov [3] and
El-Hady [4]. However, in these investigations the instability characteristics of disturbances
were studied locally and the upstream history was not taken into account.

Recently, a nonlocal stability theory based on parabolized stability equations (PSE) has
been developed. The fundamental assumption of this theory is that disturbances consist of
a fast oscillatory part and an amplitude which varies slowly in the streamwise direction.
The first to solve parabolic evolution equations for disturbances in the boundary layer was
Hall [5], who considered steady Görtler vortices. Itoh [6] used a parabolic equation to study
the evolution of small-amplitude Tollmien–Schlichting waves. The method was further de-
veloped by Herbert and Bertolotti [7, 8, 9, 10], who also derived the nonlinear parabolized
stability equations. Simen and Dallmann [11, 12] independently developed a similar theory.
Their contribution was to model consistently and generally convectively amplified waves with
divergent or curved wave-rays and wave-fronts propagating in nonuniform flow.

The Parabolic Stability Equations share many features with the Parabolized Navier-Stokes
(PNS) equations developed in the late sixties. One of the difficulties encountered in the Parab-
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olized Navier-Stokes equations is the presence of the streamwise pressure gradient term,Px ,
in the streamwise momentum equation, which permits information to be propagated upstream
through subsonic portions of the flowfield such as a boundary layer (see Rubin [13] and Rubin
and Tannehill [14]). As a consequence of this, a space-marching method of the solution is
not well-posed and in many cases exponentially growing solutions (departure solutions) are
encountered. Different methods have been suggested to avoid this problem; see Andersonet
al. [15, pp. 433–440] for an extensively compiled review. Lubard and Helliwell [16] approx-
imatedPx with a backward-difference formula. They found that, for step sizes1x > 1xmin,
the calculations were stable and the departure effect was suppressed. Vigneronet al. [17, 18]
extended Lubard and Helliwell’s analysis, by treatingPx exactly in the supersonic region,
but only keeping a fraction ofPx in the subsonic region. Other techniques for treating the
equations numerically were proposed by,e.g.Lin and Rubin [19], Rubin and Lin [20] and
Israeli and Lin [21].

The Parabolized Stability Equations, like the PNS equations, are not fully parabolic equa-
tions, see Haj-Hariri [22]. The remaining small ellipticity mainly comes from the gradient of
the disturbance pressure. This makes it necessary to use an implicit scheme and a large enough
marching step size in the streamwise direction to obtain a stable solution. If too small a step
size is used, the solution will eventually diverge. Li and Malik [23, 24] showed that using
the PSE-approximation on the constant coefficient two-dimensional Navier-Stokes equations
leads to an ill-posed Cauchy problem. They also derived a distinct step-size restriction for
this problem, valid when a first-order backward Euler scheme is used, similar to the step-size
restriction encountered for the PNS. Furthermore, they showed that dropping the streamwise
derivative of pressure in the primitive variable formulation, and the derivative of streamwise
wavenumber in the stream-function formulation, reduces the step-size restriction consider-
ably. However, the ellipticity cannot be completely removed, and dropping these terms affects
solution accuracy for some flows,e.g.the rotating-disk flow.

In the present paper, the fundamental solutions of two-dimensional linearized Navier-
Stokes equations for spatially developing disturbances are derived and compared to those
of the parabolized stability equations. The parabolizing steps are analyzed and several exam-
ples of the step-size restriction are shown. Furthermore, a stabilizing procedure for PSE is
suggested and successfully applied to several flow cases.

2. The spatial development of disturbances

2.1. THE LINEARIZED TWO-DIMENSIONAL NAVIER -STOKES EQUATIONS

In order to study the effect of the PSE-approximation on the full elliptic equations, we first turn
our attention towards the incompressible two-dimensional Navier-Stokes equations, which
are linearized around a mean flow with streamwise velocityU and normal velocityV . We are
interested in the spatial development of disturbances and Fourier-transform the disturbances in
time. Since the equations are linear, it suffices to consider a single mode with fixed frequency
ω. The non-dimensional disturbance equations are

ux + vy = 0, (1a)

−iωu+ Uux + Uxu+ V uy + Uyv = −px + 1

R
(uxx + uyy), (1b)
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−iωv + Uvx + Vxu+ V vy + Vyv = −py + 1

R
(vxx + vyy), (1c)

with boundary conditions

u = v = 0 at y = ymin and y = ymax.

where the first equation is the divergence-free constraint and the last two are the streamwise
and normal momentum equations, respectively. Herex represents the streamwise andy the
normal coordinate. Further,u andv are the velocity components of the disturbance in thex

andy-directions, respectively;p is the disturbance pressure andR = UrL/ν is the Reynolds
number. HereUr , L andν denote the reference velocity, length and viscosity, respectively.
Moreover, the indicesx andy refer to the derivative with respect to the streamwise and normal
direction, respectively.

Alternatively, Equation (1) can be written in terms of the stream function,ψ , defined as

u = ∂ψ

∂y
, v = −∂ψ

∂x
.

Then, the resulting equation is(
−iω − 1

R
∇2+ U ∂

∂x
+ V ∂

∂y

)
∇2ψ −∇2U

∂ψ

∂x
−∇2V

∂ψ

∂y
= 0, (2)

with

∇2 = ∂2

∂x2
+ ∂2

∂y2
,

and with boundary conditionsψ = ψy = 0 atymin andymax.

2.2. PARABOLIZED STABILITY EQUATIONS

In this section the standard PSE-method will be applied to the system defined by Equa-
tion (1). The basic assumption in the derivation of the parabolic stability equations is that
the streamwise variation of the mean flow is slow. We start the derivation of the parabolic sta-
bility equations by separating the disturbances into an amplitude function and an exponential
function. For the streamwise component we have

û(x, y) = ũ(x, y) ei
∫ x
x0
α(ξ) dξ

, (3)

whereα is the complex streamwise wavenumber. Introducing the aboveansatzinto (1) we
obtain the following system

ũx + iαũ+ ṽy = 0, (4a)

−iωũ+ Uũx + iαUũ+ Uxũ+ V ũy + Uyṽ

= −p̃x − iαp̃ + 1

R

(
ũxx + 2iαũx + i dαdx ũ− α

2ũ+ ũyya
)
, (4b)

−iωṽ + Uṽx + iαUṽ + V ṽy + Vxũ+ Vyṽ

= −p̃y + 1

R

(
ṽxx + 2iαṽx + i dα

dx
ṽ − α2ṽ + ṽyy

)
, (4c)
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with boundary conditions

ũ = ṽ = 0, y = ymin and y = ymax.

To be consistent with the assumption of a slowly varying mean flow, we will assume that the
amplitude functions,̃u, ṽ andp̃, and the wavenumber,α, are slowly varying functions ofx.
We assume

∂

∂x
, V ∼ O(R−1),

while the sizes of other quantities are assumed to be ofO(1). Neglecting all terms of order
O(R−2) and higher, we arrive at the following system of equations

q̃x = Lq̃, (5)

where

L =


−iα −D 0

0 −c1

U
− Vy
U
−D
U

−c1 + iαU − Ux UD − Uy −iα

 (6)

q = (u, v, p)T , c1 = iαU − iω + VD − 1

R
(D2− α2)

and with boundary conditions̃u = ṽ = 0 at y = ymin andy = ymax. Here,D denotes the
derivative with respect to the normal direction,y, and superscriptT refers to the transpose of
the vector. Notice that no second-orderx-derivatives are left in the equations. To remove the
ambiguity in expression (3), both the amplitude functions and the streamwise wavenumber
are assumed to be functions ofx, the auxiliary condition∫ ymax

ymin

(ũ∗ũx + ṽ∗ṽx + p̃∗p̃x) dy = 0, (7)

can be used. This relation ensures that most of thex-variation of the disturbances will find
its way into the exponential function and the streamwise variation ofq̃ remains small, in
accordance with our original assumption. We solve Equations (5) by marching downstream,
starting with an appropriate initial condition.

The corresponding stream-function formulation of Equations (5) is

(L0+L1)ψ̃ +L2ψ̃x + i dα
dx

L3ψ̃ = 0, (8)

with boundary conditions̃ψ = ψ̃y = 0 atymin andymax. The operatorsL0 to L3 operate only
in y and are

L0 = − 1

R
(D2− α2)2+ (iαU − iω)(D2− α2)− iαUyy,
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L1 = −VyyD + V (D2− α2)D,

L2 = U(D2− 3α2)+ 2αω− Uyy,

L3 = −iω + 3iαU.

The auxiliary condition can be formulated as∫ ymax

ymin

ψ̃∗ψ̃x dy = 0. (9)

3. Fundamental solutions to the constant-coefficient problem

3.1. TWO-DIMENSIONAL NAVIER -STOKES EQUATIONS

To simplify the theoretical studies, we apply a Fourier transform of the disturbance quantities
in the y-direction. We useη to denote the wavenumber in this direction. We start with the
two-dimensional Navier-Stokes Equations (1a–c) and find,

ûx + iηv̂ = 0, (10a)

−iωû+ Uûx + Uxû+ iηV û+ Uyv̂ = −p̂x + 1

R
(ûxx − η2û), (10b)

−iωv̂ + Uv̂x + Vxû+ iηV v̂ + Vyv̂ = −iηp̂ + 1

R
(v̂xx − η2v̂), (10c)

where the superscriptˆ refers to Fourier-transformed quantities. Here we will consider the
fundamental solutions to the system of Equations (10). For simplicity, we restrict ourselves
to a constant mean flow. To compare the exact solutions of the complete equations to those
obtained by means of the PSE-approximation, we assume the solutions to be of the form

q̂(x) = q̃(x) ei
∫ x
x0
α(ξ) dξ

. (11)

Introducing the aboveansatzinto the disturbance Equations (10), we obtain the system

d

dx


ũ

ṽ

ṽx
p̃

 =


−iα −iη 0 0

0 −iα 1 0

0 c2 UR − iα iηR

c3 iηU −i η
R

−iα



ũ

ṽ

ṽx
p̃

 , (12)

where

c2 = (−iω + iηV )R + η2, c3 = iω − iηV − η
2

R
.
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Here, we have eliminated thêuxx-term, using thex-derivative of the continuity equation.
The solutions to the system above can be constructed formally from the eigenvalues and
eigenvectors of the matrix representing the evolution operator.

The eigenvalues,λi, and their corresponding eigenvectors,8i , of system (12) are,

λ1,2 = −iα ± η, (13a)

λ3,4 = −iα + UR
2
± 1

2

√
U2R2+ 4η2+ 4iV ηR − 4iωR, (13b)

and

81 = (i, 1, λ1,
ω

η
− V − iU)T , (14a)

82 = (−i, 1, λ2,
ω

η
− V + iU)T , (14b)

83 = (η, iλ3− α, λ3[iλ3 − α], 0)T , (14c)

84 = (η, iλ4− α, λ4[iλ4 − α], 0)T . (14d)

A characteristic feature of a parabolic system is that the information propagates in one direc-
tion only. This makes it possible for us to calculate the solution to such a system by marching
in the propagation direction. The propagation directions of the eigenmodes are given by their
group velocities defined as

Cg = ∂ω

∂α
.

The group velocities can be obtained by differentiation of the expressions for the eigenvalues,
λ,

∂λ

∂α
dα + ∂λ

∂ω
dω = 0, (15)

which gives,

dω

dα
= − ∂λ

∂α

/
∂λ

∂ω
. (16)

The first two eigenvalues,λ1,2, are associated with the disturbance pressure. Since these eigen-
values are independent ofω, the corresponding group velocities can be thought of as infinite,
one traveling upstream and the other downstream. A Taylor-series expansion ofλ3,4, for large
UR, gives

λ3 ≈ −iα + UR + η2

UR
+ iηV

U
− iω
U
, (17a)

λ4 ≈ −iα − η2

UR
− iηV

U
+ iω
U
, (17b)

which yields

Cg3 ≈ −U, Cg4 ≈ U. (18)
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The above expressions imply thatλ3 and λ4 correspond to up- and downstream traveling
solutions, respectively. In order to obtain a set of equations of a parabolic nature, the two
eigenvalues associated with upstream propagating disturbances must be removed or sup-
pressed. In fact, to extract just the solution which is relevant, it is necessary to suppress
solutions associated with all eigenvalues, exceptλ4.

Of course, the fundamental solutions to a system of equations do not change when we
rewrite them in another form. Therefore, the eigenvalues to the stream-function-formulated
equations become exactly the same as for the primitive variable formulation. So, the same
eigenmodes appear, which have to be removed in order to get parabolic equations. How-
ever, we will see in Sections 3.2 and 5.1 that, due to the nature of the numerical instabil-
ity, it can be preferable to use the PSE-approximated stream-function formulation, rather
than the primitive-variable formulation, when this is possible. Note that the stream-function
formulation can only be used for two-dimensional flow.

3.2. PARABOLIZED STABILITY EQUATIONS

The assumption of periodicity in the normal direction reduces the operatorL in Equation (6)
to

L =


−iα −iη 0

0 −c4

U
− Vy
U
− iη
U

−c4 + iαU − Ux iηU − Uy −iα

 , (19)

where

c4 = iαU − iω + iηV + α
2

R
+ η

2

R
.

Now, let us consider the constant-coefficient case,i.e. Ux = Uy = Vx = Vy = 0.
Performing the same analysis as in the previous subsection, we obtain the eigenvalues and
eigenvectors as

κ1,2 = −iα ± η, κ3 = −iα + iω
U
− iηV

U
− η2

UR
− α2

UR
, (20)

and

�1,2 =
(

1, ±i, ± iαU − c4

η
− U

)T
, �3 =

(
1, −Uα + ic4

Uη
, 0

)T
. (21)

These eigenvalues and eigenvectors can be compared to those shown in (13) and (14). We
see directly that the first two eigenvalues,κ1,2, are identical toλ1,2. The group velocity corre-
sponding to the third eigenvalue,κ3, is, to leading order, given by

Cg3 ≈ U. (22)

This is, to leading order, the group velocity of the fourth eigenvalue of the two-dimensional
Navier-Stokes equations (see Equations (17)). This implies that the parabolization procedure
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done in the PSE-approach eliminates one of the upstream propagating eigenmodes, namely
the one with group velocity−U , but leaves the one associated with the upstream propagation
of pressure disturbances. As will be shown later, the existence of eigenmodes corresponding
to the eigenvaluesκ1 andκ2, causes a numerical instability which prevents us from taking
arbitrarily small step sizes when the solution is marched in the streamwise direction.

In the stream-function-formulated PSEs, the evolution operator becomes a scalar. We apply
the PSE-approximation to Equation (8). Let us now apply a Fourier transform in the normal
direction and consider the constant-coefficient case. Then, the eigenvalue associated with the
evolution operator becomes

− (η2+ α2)c4

U(η2+ 3α2)− 2αω
. (23)

Since there is only one eigenvalue, there are no extra eigenmodes to damp out in the marching
procedure, indicating a less severe step-size restriction. However, we should remember thatα

is not knowna priori in the calculations.

4. Simple example of the step-size problem

Here, we demonstrate the numerical-instability problem of the PSE-approximation by solving
the equations for a one-dimensional basic flow with disturbances which are periodic in the
normal direction. We also restrict ourselves to a parallel mean flow with,

V = 0, U =


0·5; 06 x 6 0·4;

−125x3 + 187·5x2 − 90x+ 14·5; 0·4< x < 0·6;
1; 0·66 x 6 1.

The mean flow is plotted in Figure 1a. The auxiliary condition now becomes

ũ∗ũx + ṽ∗ṽx + p̃∗p̃x = 0.

Here, we solved Equations (5) numerically by discretizing thex-derivative of the 3×3-system
with a first-order backward Euler scheme. A secant method was used to findα such that the
auxiliary condition was fulfilled. Moreover, we found the initial conditions by solving the
localx-independent system.

The system of equations was solved with the mean field given above and the flow parame-
tersR = 105,ω = 100 andη = 100. In Figures 1c and 1d the growth rates of the disturbances,
û andv̂ are given. The growth rate for thêu component is defined as

−αi +<e
{

d

dx
log(ũ)

}
,

and similar for thev̂ component of the disturbance. For comparison, the results obtained
from the local theory and the multiple-scales method are also given there. The details of the
multiple-scales method are discussed in Appendix 7. The PSE results showed an oscillatory
behavior forx > 0·55. These oscillations increased with decreasing step size,1x. For1x =
0·0093, the calculations started to diverge. As is demonstrated in these figures, converged
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Figure 1. (a) Step function describing the mean field, (b) streamwise wavenumbervsstreamwise position for thêu
andv̂ components. Growth ratevsstreamwise position for the (c)û (d) v̂ component calculated with PSE-method,
multiple-scales method and local theory.

stable solution could not be obtained here. The large difference between the local and non-
local theories, in the region where the mean flow varies, shows the importance of incorporating
non-parallel effects in the theory.

Furthermore, it should be noted that the oscillations started at the position where1x <

1/|αr |, as was suggested by Li and Malik [23, 24] (see Figure 1b).
It should be mentioned here that the variation of the mean flow is rapid and some of the

basic assumptions may not be valid. However, the PSE-results approach those of the multi-
ple scales. This illustrates that there are cases where a converged solution cannot be found
before the instability associated with the small step sizes occurs. The existence of such cases
motivates a study with the aim to stabilize the PSEs and to remove the step-size restriction.

5. Stabilization of the PSE-equations

5.1. WELL-POSEDNESS OF THEPSE

Well-posedness is an important instrument in numerical analysis to decide whether it is worth-
while to try and solve an equation numerically. Usually, ill-posedness of the equations means
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that any attempt to solve them numerically is fruitless, since the solution will always start to
grow without bound at some point in the calculation domain. Once we know that the equations
are well-posed, a stable numerical scheme can be chosen to obtain a numerical solution that
converges to the analytical one.

Well-posedness, in the Kreiss and Lorenz sense [25, pp. 23–80], means that the solution is
permitted to grow at most exponentially. Mathematically, this means that

|eκix| 6 Keγ x, (24)

whereK andγ are constants andκi are all the eigenvalues of the constant-coefficient spa-
tial operator. For the first two eigenvalues PSE-system, which areκ1 and κ2 as given in
Equations (20), we have

|e(−iα±η)x| → ∞, when η→±∞, (25)

which means that the solution can grow without bound whenη approaches infinity. This
implies that the equations are ill-posed. In the following section it will be shown how we may
overcome this by choosing a numerical algorithm that damps out the solutions corresponding
to these two eigenvalues, leaving the solution that corresponds to the third eigenvalue, which
is the solution of interest.

The stream-function formulation reduces the spatial operator to a scalar, see (23). The real
part of this scalar stays negative when|η| → ∞, for reasonable values of the flow parameters.
This means that, in terms of well-posedness, the stream-function-formulated PSEs are well-
posed in the Kreiss and Lorenz sense. This indicates that we may expect a less severe step-size
restriction than was needed for the primitive-variable-formulated equations, as founde.g.by
Li and Malik [24].

5.2. STABILIZATION BY MEANS OF A BACKWARD EULER SCHEME

In the preceding sections we have shown that the PSE-approximation removes one of the
eigenvalues that corresponds to an upstream propagating mode. It has also been seen that
the first two eigenvaluesκ1 andκ2 are responsible for making the equations ill-posed. In this
section it will be shown that it is possible to damp out these two eigenvalues numerically. The
argument follows that of Li and Malik [23, 24], and is given here for completeness.

Since the eigenvalues are distinct, we can write Equations (5), with constant coefficients,
as three separable equations

dφi
dx
= κiφi. (26)

Hereκ1, κ2 andκ3 are the three eigenvalues of the matrix operator in (19), as given in (20).
Moreover,φ1, φ2 andφ3 contain an appropriate linear combination ofũ, ṽ andp̃. Applying
the first-order backward Euler scheme, we have

φn+1 = φn

1−1xκi = γiφ
n. (27)

Here,γi is called the amplification factor. To obtain absolute stability of the numerical scheme,
the condition|γi| < 1 must hold for allκi. Introducingκ1 andκ2 into the expression for the
amplification factor, we find

γ1,2 = 1

[1+ (αi ± η)1x] + iαr1x , (28)
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whereαr andαi are the real and imaginary parts ofα, respectively. Sinceη can take any value
on the real axis, the only way to ensure that|γ1,2| < 1 holds is to make sure that the inequality

1x >
1

|αr | , (29)

is valid for all values ofη. The above step-size restriction seems to hold for most PSE appli-
cations. It is easy to show that an explicit scheme will always produce numerical instabilities.
Thus, a crucial part of the PSE method is to use an implicit scheme with a large enough step
size in the streamwise direction.

5.3. STABILIZATION BY ADDITION OF A TRUNCATION ERROR

5.3.1. Stabilized equations
It is unsatisfactory to work with ill-posed equations. Therefore, in this section we shall make
suggestions on how to stabilize the PSEs for arbitrarily small step sizes. The goal is to mod-
ify the system of equations such that the numerical instability is removed, but the physical
solutions remain unchanged.

The truncation error to the first-order backward Euler scheme becomes

τ = 1x

2
q̃xx + · · ·

Since we have assumed that the streamwise variation of the amplitude function is of order
O(R−1), the terms signified by· · · in the expression above will be of orderO(R−31x2).
Dropping all but the leading terms of the truncation error and using Equation (5), we get

τ = 1x

2
q̃xx = 1x

2
(Lxq̃+Lq̃x) ≈ 1x

2
Lq̃x, (30)

Here, the termLxq̃ has been neglected for simplicity. However, equality holds ifL is inde-
pendent ofx. Recall that the assumption of smallx-derivative terms implies that the added
truncation error is of the orderO(R−2). Since terms of this order were neglected in the
original approximation, the addition ofτ does not introduce any extra error at this order of
approximation, and we can introduce the new set of equations

q̃x = Lq̃+ sLq̃x. (31)

Here,s is a positive real number. Based on the discussion given above, the differences between
the solution of Equations (5) and (31) are of orderO(R−2). Note that, althoughs take the place
of 1x in the added truncation error term, this term is small, even ifs = O(1), sinceLq̃x was
shown to be of orderO(R−2).

As was mentioned before, the PSE method includes an iteration to fulfill the auxiliary
condition, whereα is iterated until the auxiliary condition is fulfilled. Based on the auxiliary
condition, we can introduce the norm∫ ymax

ymin

q̃†q̃x dy = (q̃, q̃x),
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where † denotes the complex conjugate. In the original case, this gives the equation

(q̃, q̃x) = (q̃,Lq̃) = 0,

to which we have to apply an iteration procedure to obtainα. In the modified case we get

(q̃, q̃x) = (q̃,Lq̃)+ s(q̃,Lq̃x) = 0.

We find that the additional term in the equation forα also is of the orderO(R−2), implying
formally that the difference inα values will be of the same order as those terms that were
originally neglected in the PSE approximation. Thus, added terms do not contribute any extra
error at the given order of approximation in inverse powers of the Reynolds number. However,
if the streamwise variation of the amplitude function becomes rapid, the error may become
significant.

In the following the numerical instability of Equation (31) will be examined and its effi-
ciency in removing the step-size problem will be demonstrated.

5.3.2. Stability analysis of the modified equations
Here we will study the numerical stability of the Equations (5), modified by the termsLq̃x.
We recall the operatorL of Equation (19) and consider the constant-coefficients case. Then,
the eigenvalues of Equation (31) become

κS1 =
κ1

1− sκ1
, κS2 =

κ2

1− sκ2
, κS3 =

κ3

1− sκ3
, (32)

whereκ1, κ2 andκ3 are the eigenvalues of the original system, given in Equations (20). The
eigenvectors remain the same as those ofL, given in Equations (21).

Let us repeat the analysis of Section 5.2 for the modified PSEs. Using first-order backward
Euler, we find that the discretized form of Equation (31) reads

(I −1xL− sL)q̃n+1 = (I − sL)q̃n, (33)

which gives the amplification factors

γi = 1− sκi
1− (1x + s)κi .

For absolute stability we demand|γi| < 1 for all values ofη. The two troublesome eigenmodes
become

|γ1,2|2 =
∣∣∣∣ 1− sκ1,2

1− (1x + s)κ1,2

∣∣∣∣2 = [1− s(αi ± η)]2 + (sαr)2
[1− (1x + s)(αi ± η)]2+ [(1x + s)αr ]2 .

The condition

max
η
|γ1,2|2 < 1,

gives the critical step size as

1x >
1

|αr | − 2s. (34)
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We performed the maximization in a standard manner by taking derivatives and searching for
extrema. Equation (34) implies that thes value giving marginal stability approaches 0·5/|αr |
when1x → 0. Consequently, we can stably march PSEs downstream for any arbitrarily small
step size by using a suitables.

5.3.3. Well-posedness of the modified equations
The eigenvalues to the modified system are

κS1,2 =
−iα ± η

1− s(−iα ± η), κS3 = −
c5

U + sc5
, (35)

where

c5 = iαU − iω + iηV + α
2

R
+ η

2

R
.

It is evident that the first two eigenvalues approach−1/s whenη → ±∞ and, as long as
αr 6= 0, these eigenvalues will have finite maxima. The same argument is true for the third
eigenvalue, for reasonable values of the flow parameters. If all eigenvalues contain a maximum
value for someη, it is possible to find constantsK andγ such that

|eκSi x | 6 Keγ x (36)

holds for all values ofη. Recalling the definition of well-posedness, we can conclude that the
new system of equations is well-posed.

6. Numerical examples of the stabilizing procedure

In order to demonstrate the efficiency of the suggested stabilizing procedure, we solved the
stabilized PSEs for different basic flows. A comparison between these results and those from
the original PSEs are given below.

6.1. y-PERIODIC DISTURBANCES REVISITED

We added a term proportional to the truncation error of the backward Euler scheme to the
Fourier-transformed problem from Section 4. The new system of equations was discretized in
the same fashion as the original PSE-system. The stabilizing parameters was set tos = 1.
From Equation (34) we get the critical value ofs as s = 0·0049, for which an arbitrary
small step size can be used. Despite the rapid variation of the mean flow which contrasts with
our basic assumptions, the results were found to be in good agreement with those obtained
from the method of multiple scales. Furthermore, numerical instability was not observed for
small step sizes. Thus, for these flow parameters, the stabilization procedure allowed us to
obtain a converged solution, which could not be obtained with the original PSE formulation.
The results for a step size1x = 2× 10−4, i.e. well below the previously found step-size
restriction limit of1x ≈ 0·01, are given in Figure 2. The growth rate from the method of
multiple scales is also plotted there.
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Figure 2. Growth ratevsstreamwise position, fory-periodic disturbances, with stabilizing terms for the (a)û (b) v̂
component calculated with PSE method, multiple-scales method and local theory.

6.2. BOUNDARY-LAYER FLOW

The stabilizing procedure was also successfully applied to a non-parallel boundary-layer flow.
The equations were linearized around the two-dimensional Blasius boundary-layer flow,i.e.
the solution to the equation

ff ′′ + 2f ′′′ = 0, (37)

where,

U ∗(x, y) = U∞f ′(ξ), V ∗(x, y) = 1

2

√
νU∞
x∗

(ξf ′(ξ)− f (ξ)), (38)

with

ξ = y∗
√
U∞
νx∗

,

and boundary conditions

ξ = 0 : f = 0, f ′ = 0, ξ →∞ : f ′ → 1.

The disturbances were governed by Equations (5) and subjected to the boundary conditions

y = 0 : u = v = 0; y →∞ : u, v, p→ 0.

The calculations where made for the same case as studied by Li and Malik [23, 24], with a
disturbance frequencyF = 70× 10−6, where

F = 2πν

U2∞
f ∗,

with f ∗ being the physical frequency. The calculations were started atR = U∞L/ν = 500,
whereL = √

νx∗0/U∞. Dimensional variables are denoted by∗ for these parameters. The
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Figure 3. Growth ratevsstreamwise position, for boundary-layer flow, obtained from the PSE method without (a)
with (b) stabilizing terms for the three smallest step sizes. The value of the stabilizing parameter was set tos = 4.

real part of the streamwise wavenumber wasαr ≈ 0·106, which gave a critical step size
of approximately1x = 9·5 based on the length scale atR = 500. The calculations were
performed for four different step sizes1x = 11, 9, 5 and 2·5. In Figure 3a the results for the
original PSEs are presented. Here the growth rate was based on the maximum ofũ, i.e.

−αi +<e
{

d

dx
log(ũmax)

}
.

As can be seen there, we only obtained a smooth solution for the stable step size,1x = 11.
All attempts to march with step sizes under the critical value became numerically unstable at
some point in the calculation domain.

The results from the modified PSEs withs = 4 are given in Figure 3b. The disturbance
growth rate calculated from the original PSEs for1x = 11 is also given for reference pur-
poses. As is shown there, numerical instability was absent in these calculations and results for
all step sizes collapsed to the same curve.

To investigate the effect of the parameters on the results and to test the step-size restriction
given by Equation (34) for the modified equations, we calculated the growth rate using a step
size smaller than the critical value for the original PSEs,1x = 5. Three different values of
the parameters were used, one just unders = 2, one just overs = 2·5 and one considerably
largers = 10 than the critical values ≈ 2·1. All flow parameters were identical to those used
to obtain the results in Figures 3a and 3b. The results are presented in Figure 4a together with
the results of the original PSEs with1x = 11 for reference purposes. These results show that,
if the parameters is larger than its critical value, it does not affect the results, but removes the
numerical instability. However, the instability is still present for those values ofs which are
smaller than the critical value.

To further test the step-size restriction for the modified PSEs, we repeated the calculations
for the different values of1x ands plotted in Figure 4c. When using combinations of(1x, s)

in the stable region, we obtained converged solutions. However, all attempts to march with
combinations of(1x, s) in the unstable region gave numerical instabilities (see Figures 4a–c).

Li and Malik [23, 24] stabilize the equations by putting∂p̃/∂x = 0, a strategy which is
sometimes used for the solution of the PNS equations. This does not introduce any visual
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Figure 4. Solutions of the modified PSEs, in the Blasius boundary layer, for different values of the stabilizing
parameters and the step size1x. (a) Growth ratevsstreamwise position. (b) Growth ratevsstreamwise position
(c) Combinations of(1x, s) corresponding to stable or unstable marching conditions. Circles(stars) correspond to
stable(unstable) solutions in Figures 4a and 4b. Note that the line is given by Equation (34) derived in Section 5.3.2.

error for the Blasius boundary-layer case studied here (see, however, the rotating-disk flow
in Section 6.3). Dropping of the∂p̃/∂x-term makes it possible to march the equations with a
smaller streamwise step size. However, the solution blows up when the step size1x = 0·25
is used and numerical instabilities occur earlier for the smaller step size1x = 0·2.

6.3. FLOW NEAR A ROTATING DISK

We now consider the three-dimensional flow over an infinite rotating disk. The equations are
written in (r, θ, y) coordinates, wherer is the radius from the rotating axis,θ is the azimuthal
coordinate, andy the height above the disk. The von Karman solution is used as mean flow,
i.e.

F 2− (G+ 1)2+ F ′H − F ′′ = 0,

2F(G+ 1)+G′H −G′′ = 0,

2F +H ′ = 0,

164137.tex; 14/05/1998; 13:56; p.16



On a stabilization procedure for the parabolic stability equations327

(a) (b)

PSE   r=10               ∆

Mod. PSE    r=5                      ∆

Mod. PSE    r=1                      ∆

Mod. PSE    r=0.1                    ∆

300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R

gr
ow

th
ra

te

(c)

Figure 5. Rotating-disk flow. (a) Streamwise wavenumbervsstreamwise position, and growth ratevsstreamwise
position as obtained from the PSE method without (b) with (c) stabilizing terms for the three smallest step sizes.

where

U(r, y) = rF (y), W(r, y) = rG(y), V (y) = H(y),
and with the boundary conditions

y = 0 : F = G = H = 0; y →∞ : F → 0, G→ −1.

HereU , V , andW are the non-dimensional velocity components in ther, y and θ direc-
tions, respectively. The reference length is taken asL = √ν/�∗ and reference velocity
Uref =

√
ν�∗, where�∗ is the dimensional angular velocity of the rotating disk. The Reynolds

number at positionr∗ is defined asR = r∗√�∗/ν. Here∗ refers to dimensional variables. The
equations that we solve are given in Appendix B.

The calculations were made for a case which is identical to that studied by Li and Ma-
lik [24]. They considered stationary cross-flow disturbances,i.e. ω = 0, with the azimuthal
number of wavesn = 30. The growth rate is based on the maximum of the azimuthal
disturbance velocitỹw, i.e.

−αi +<e
{

d

dr
log(w̃max)

}
.
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As is shown in Figure 5a,αr decreases with increasing radial position, which means that the
critical minimum step size increases. This can also be observed from the curves of Figure 5b.
In this figure the growth rates from original PSEs for two different step sizes,1r = 10 and 5
are given. As is shown there, only1r = 10 gave a smooth solution through the whole compu-
tational domain. The growth rates for the step sizes1r = 1 and 0·1 were also calculated from
the original PSEs. However, these curves started to deviate so early from those in Figure 5b
that we did not consider it meaningful to plot these in the same figure.

Here, as in the previous cases, when the modified PSEs were used, the numerical instability
was removed. The results fors = 20 are given in Figure 5c. Equation (34) gave the critical
value ofs ass = 7·6. The results for all step sizes used here collapsed to that of1r = 10
from original PSEs.

Li and Malik [24] showed that, by dropping∂p̃/∂r in the primitive-variable formulation,
the step-size restriction could be relaxed. Using the vorticity–velocity formulation and drop-
ping dα/dr, they found that the step-size problem was relaxed further. They presented smooth
results for1r = 1·5. However, by dropping∂p̃/∂r or dα/dr the results became slightly
different (see Figure 8 in Li and Malik [24]). Furthermore, by modifying the iteration method
for α in vorticity–velocity formulation, they could reduce the step size to1r = 1 and still
obtain a numerically stable solution. Note that this value is still an order of magnitude larger
than the smallest step size used in the calculations presented in Figure 5c.

It should be mentioned that the term dα/dr is not present in the equations used here. This
follows naturally from the assumptions discussed in Section 2.2.

7. Discussion and conclusions

Comparing fundamental solutions of the spatially formulated linearized two-dimensional
Navier-Stokes equations and the PSEs with constant coefficients, we have shown that the
parabolizing procedure eliminates the most dangerous upstream propagating eigenmode. The
remaining ellipticity makes the PSEs ill-posed, although a large streamwise step size can
stabilize the numerical solution procedure.

In two-dimensional incompressible flows it is possible to apply the PSE-approximation
on the stream-function-formulated equation, instead of the primitive-variable equations. It is
shown here that this formulation is well-posed, which indicates why the step-size problem has
been less severe than for other formulations. However, this formulation does not remove the
numerical instability of PSE.

It was also shown that the parabolized stability equations can be modified such that the
numerical instability is removed but the physical solution remains unaffected. This was done
by the addition of a term proportional to the truncation error of the first-order backward Euler
scheme,sLq̃x . We pointed out thatLq̃x is ofO(R−2). Thus, ifs is ofO(1), this added term
is as small as those which were neglected when the PSE-approximation was applied to the
Navier-Stokes equations. Note especially thats need not be ofO(1x). This procedure leads
to well-posed equations, and to an elimination of the step-size restriction. It was possible to
solve the PSEs for several different flows, with a marching step size considerably below the
step-size restriction given by Li and Malik [23, 24]. It was also possible to derive a distinct
step-size restriction for the stabilized equations. This became1x > 1/|αr |−2s, which implies
that the step-size restriction is removed ifs > 0·5/|αr |. The simplicity of the implementation
of the method discussed here should also be emphasized.
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Appendix A. The method of multiple scales

The method of multiple scales is the foundation on which the PSE-method rests. For a pre-
sentation of the method of multiple scales see, for example, Nayfeh [26, 228–307]. Here, this
method is applied to the disturbance equations. We start with Equations (10) in Section 3. In
order to get a simple system, with the streamwise variation of the mean flow included, we
assumeV = 0 butUx 6= 0. Under these conditions, the system of Equations (10) simplifies to

∂q̂
∂x
= Aq̂, A =



0 −iη 0 0

0 0 1 0

0 −iωR + η2 UR iηR

iω − η
2

R
− Ux iηU −i η

R
0

 . (A1)

The basic assumptions in the multiple-scales method is that the solution can be divided into a
slowly varying amplitude function and an exponential function

q̂(x) = q̃(ξ) e
1
ε

∫ ξ
ξ0
α(ζ) dζ

, (A2)

whereξ = εx andε � 1. Note that both the amplitude functioñq and the exponentα are
slowly varying. A series expansions inε is now introduced,

q̃(ξ) =
∞∑
n=0

εnq̃n(ξ), α(ξ) =
∞∑
n=0

εnαn(ξ). (A3)

Also the matrix operatorA(x) is assumed to be slowly varying inx,

A(x) =
N∑
n=0

εnAn(ξ). (A4)

Since(∂/∂x) = ε(∂/∂ξ), A0 does not contain any streamwise derivatives of the mean flow;
A1 contains only the first-order derivatives and so on. Introducing the assumption (A2) into
Equation (A1) gives

ε
∂q̃
∂ξ
+ αq̃ = Aq̃. (A5)

If we introduce the expansions forq̃, α andA, and collect terms of the same order we find

ε0: (A0− Iα0)q̃0 = 0, (A6a)

ε1:
∂q̃0

∂ξ
+ α0q̃1+ α1q̃0 = A0q̃1+A1q̃0, (A6b)

ε2: · · · . (A6c)

164137.tex; 14/05/1998; 13:56; p.19



330 P. Andersson et al.

The zeroth order equation shows thatα0 and q̃0 corresponds to one of the eigenvalues and
eigenvectors ofA0, respectively. The first-order equation can subsequently be used to obtain
α1 andq̃1, and so on, to obtain as many terms as are needed.

Note thatA0 is the same matrix as the one appearing in Section 3.1, but withα andV
equal to zero. Thus, the eigenvalues and right-hand eigenvectors toA0 can also be found from
Equations (13) and (14). Let us introduce the left-hand eigenvectors ofA0 defined by

9T
i A0 = λi9T

i .

Since the operatorA0 has distinct eigenvalues, the left and right eigenvectors corresponding
to different eigenvalues are orthogonal,9i ·8j = 0 if i 6= j . Here

91 =
(
iωR − η2, iUR

λ2
1

η
, −i λ

2
1

η
, λ1R

)T
, (A7a)

92 =
(
iωR − η2, iUR

λ2
2

η
, −i λ

2
2

η
, λ2R

)T
, (A7b)

93 = (iη[iωR − η2], −iωRλ3, λ
2
3, iηRλ3)

T , (A7c)

94 = (iη[iωR − η2], −iωRλ4, λ
2
4, iηRλ4)

T . (A7d)

In order to solve for̃q1 in the first-order equations we expand the solution in the right-hand
eigenvectors ofA0,

q̃1 = c181+ c282+ c383+ c484. (A8)

Introducing the above expression into (A6b) we have(
∂q̃0

∂ξ
−A1q̃0

)
+

4∑
i=1

ci(α0− λi)8i + α1q̂0 = 0. (A9)

Replacingq̂0 = 84 andα0 = λ4 (here84 is the relevant physical solution) and taking the
dot-product with the three first left-hand-side eigenvectors we have

ci = (9i ·8i)
−1(λi − λ4)

−19i ·
(
∂84

∂ξ
−A184

)
; i = 1,2,3. (A10)

Taking the dot-product of (A9) with94 we obtain an equation for the first-order term in the
expansion forα,

α1 = (94 ·84)
−194 ·

(
A184− ∂84

∂ξ

)
. (A11)

The first term in the expansion for the amplitude function must be linearly independent from
the other terms; thusc4 must be equal to zero in all terms but the first. The first-order amplitude
function,q̃1, can be calculated from the coefficientsc1, c2, c3 andα1.
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Appendix B. Equations governing the rotating-disk flow

The PSEs, based on the same approximations used in Section 2.2, that govern the disturbances
in a rotating-disk flow are

ũr +
[
iα + 1

r

]
ũ+ ṽy + i n

r
w̃ = 0, (B1a)

URũr + Rp̃r +
[
iαUR + i R

r
nW − iωR + n

2

r2
+ RUry − 3i

α

r
+ 3

r2
+ 3α2

]
ũ

+RUyṽ +
[
4i
n

r2
+ 2+ 2

αn

r
− 2R

W

r

]
w̃

+iαRp̃ + VRũy − 2iαṽy − ṽyy = 0, (B1b)

URṽr +
[
iαUR + i R

r
nW − iωR + n

2

r2
+ RVy − i α

r
+ α2

]
ṽ

−
[
2iα + 2

r

]
ũy + VRṽy − 2i

n

r
w̃y + Rp̃y − 3ṽyy = 0, (B1c)

URw̃r +
[
R
W

r
+ RWry + 2

αn

r
− 4i

n

r2
− 2

]
ũ+ RWyṽ

+
[
iαUR + i R

r
nW − iωR + 3

n2

r2
+ UR

r
− i α

r
+ α2+ 1

r2

]
w̃

−iRn
r
p̃ − 2i

n

r
ṽy + VRw̃y − w̃yy = 0, (B1d)

with boundary conditions

ũ = ṽ = w̃ = 0, y = 0 and y = ∞.

Hereũ, ṽ, andw̃ are the non-dimensional disturbance velocity components in ther, y andθ
directions, respectively, and̃p represent the disturbance pressure.
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